
n2d Documentation
Release 0.3.1

David Josephs

Mar 26, 2020

Contents:

1 About N2D 1
1.1 What is N2D? . 1
1.2 Purpose of the library . 1
1.3 Citation . 2

2 Getting started 3
2.1 Installation . 3
2.2 Loading Data . 3
2.3 Building the model . 4
2.4 Predicting on new data . 10
2.5 Saving and Loading . 11

3 Advanced Usage 13
3.1 Changing the Manifold Clustering Step: . 13
3.2 Changing the Autoencoder . 15

4 Indices and tables 17

i

ii

CHAPTER 1

About N2D

N2D is a python library implementation of the “deep” clustering method described in this brilliant paper, and by all
metrics represents the absolute state of the art in time series/sequence and image clustering. The source code for the
software is available here.

In this section we will talk about the motivations for N2D, what it is, and the goals for this package.

1.1 What is N2D?

N2D is short for “Not too deep” clustering. A “not too deep” clustering algorithm works as follows:

1. The data goes into an autoencoder (or other representation learning neural network), which is trained, learning
a powerful, concise representation (embedding) of the data.

2. The autoencoded embedding then goes into a manifold learner, in this case primarily UMAP (while t-sne and
ISOMAP are also usable), which finds a local manifold within the data

3. The local manifold is then sent into a clustering algorithm, which clusters the data

1.1.1 What does it do?

The idea of N2D is as follows: by first learning an embedding of the data, and then learning the manifold of the
autoencoded data, we transform the data into a form that is readily clusterable, again demonstrated in the paper. N2D
is competitive with the most state of the art deep clustering techniques out there, with the benefit of being simple,
relatively fast, and intuitive, and represents an excellent path for future research.

1.2 Purpose of the library

The purpose of this library is to provide A) an easy library for regular use and B) an extensible framework for future
research.

1

https://arxiv.org/abs/1908.05968v5
https://github.com/josephsdavid/N2D
https://arxiv.org/abs/1908.05968v5

n2d Documentation, Release 0.3.1

1.3 Citation

Please cite the original authors of the algorithm if you use N2D in your research.

@article{2019arXiv190805968M,
title = {N2D:(Not Too) Deep Clustering via Clustering the Local Manifold of an
→˓Autoencoded Embedding},
author = {{McConville}, Ryan and {Santos-Rodriguez}, Raul and {Piechocki}, Robert J
→˓and {Craddock}, Ian},
journal = {arXiv preprint arXiv:1908.05968},
year = "2019",
}

2 Chapter 1. About N2D

CHAPTER 2

Getting started

Here we will talk about getting started with N2D so you can get clustering!!

2.1 Installation

N2D is on Pypi and readily installable

pip install n2d

Please note that if you want GPU support, You will also need to install tensorflow with GPU support

2.2 Loading Data

N2D comes with 5 built in datasets: 3 image datasets and two time series datasets, described below:

• MNIST - Description: Standard handwritten image dataset. 10 classes

• MNIST-Test - Description: Test set of MNIST. 10 classes

• MNIST-Fashion - Description: Pictures of articles of clothing, similar to MNIST but much more difficult. 10
classes

• Human Activity Recognition (HAR) - Description: Time series of accelerometer data, used to determine
whether the recorded human is sitting, walking, going upstairs/downstairs etc. 6 classes

• Pendigits - Description: Pressure sensor data of humans writing. Used to determine what number the human is
writing. 10 classes

To actually load the data, we import the datasets from n2d, shown below along with the data import functions and their
outputs

3

n2d Documentation, Release 0.3.1

from n2d import datasets as data

imports mnist
data.load_mnist() # x, y

imports mnist_test
data.load_mnist_test() # x, y

imports fashion
data.load_fashion() # x, y, y_names

imports HAR
data.load_har() # x, y, y_names

imports pendigits
data.load_pendigits # x, y

In this example, we are going to use HAR.

x, y, y_names = data.load_har()

2.3 Building the model

To build an N2D model, we are going to need 2 pieces: an autoencoder, and a manifold clustering algorithm. Both are
provided with the library thankfully! First, we will load up any libraries we want to use in this example:

import n2d
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use(['seaborn-white', 'seaborn-paper'])
sns.set_context("paper", font_scale = 1.3)
matplotlib.use('agg')
np.random.seed(0)

from n2d import datasets as data
load in the data
x, y, y_names = data.load_har()

The first step of any not too deep clustering procedure is the autoencoded embedding. Therefore, we will initialize
that first. We do this with the AutoEncoder class:

2.3.1 The AutoEncoder Class

So lets go ahead and initialize the autoencoder. This again uses the N2D AutoEncoder class:

n_clusters = 6
latent_dim = n_clusters

ae = n2d.AutoEncoder(x.shape[-1], latent_dim)

In the simplest possible example, this is it! The Autoencoder class requires the input dimensions of the data, and
the number of dimensions we would like to reduce that to (latent dimensions, embedding dimensions). We can also
modify the internal architecture of the AutoEncoder with the architecture argument. By default, the shape of the

4 Chapter 2. Getting started

n2d Documentation, Release 0.3.1

encoder is [input_dim, 500, 500, 2000, latent_dim] and the shape of the decoder is [latent_dim, 2000, 500, 500,
input_dim], or the reverse of the encoder. The autoencoder consists of these two ends stacked together, giving a
network with dimensions: [input_dim, 500, 500, 2000, latent_dim, 2000, 500, 500, input_dim]. The shape of the
network in between the input and latent dimensions can be replaced with a list, for example if we wanted the first three
layers of the encoder to be 2000 neurons, and the next 4000 we would say (expecting the decoder to be the reverse of
this):

ae_huge = n2d.Autoencoder(x.shaep[-1], latent_dim, architecture = [2000, 2000, 2000,
→˓4000])

We can also change the activation function of our hidden layers by specifying act. Below is a table of all the parameters
for AutoEncoder:

Table 1: n2d.AutoEncoder Arguments
Argument Default Description
input_dim no default The data’s dimensions, typically

data.shape[-1]
latent_dim 10 Number of dimensions you wish to

represent the data in with the au-
toencoder

architecture [500, 500, 2000] The layout of the hidden layers in
the network, presented in list form

act ‘relu’ The activation function for the hid-
den layers of the network

x_lambda lambda x: x Function used to transform the in-
puts to the network, but hold the out-
puts constant

It is important to note that while we set the latent dimensions to be the same as the number of clusters, this is not a
hard and fast rule. Use your head and some sense when choosing dimensions!

The next step in Not Too Deep clustering is to learn the manifold in the embedding and cluster that. In the original
paper describing N2D, UMAP and Gaussian mixing performed the best, and therefore are implemented in the library.
To do this, we use the UmapGMM class (replacing the autoencoder/manifold learner/clustering algorithm will be
discussed in the next chapter).

2.3.2 Clustering the Embedded Manifold: UmapGMM

Lets talk a bit more about how we learn the manifold and cluster it!! This is done primarily with the UmapGMM
object

manifoldGMM = n2d.UmapGMM(n_clusters)

This initializes the hybrid manifold learner/clustering arguments. In general, UmapGMM performs best, but in a
later section we will talk about replacing it with other clustering/manifold learning techniques. The arguments for
UmapGMM are shown below:

2.3. Building the model 5

https://github.com/rymc/n2d/issues/5#issuecomment-574688767

n2d Documentation, Release 0.3.1

Table 2: UmapGMM Arguments
Argument Default Description
n_clusters no default The number of clusters
umap_dim 2 Number of dimensions of the mani-

fold.
umap_neighbors 10 Number of nearest neighbors to con-

sider for UMAP. Defaults to 10, to
recreate cutting edge results shown
in the paper, however often 20 is a
better value

umap_min_distance float(0) Minimum distance between points
within the manifold. Smaller num-
bers get tighter, better clusters while
larger numbers are better for visual-
ization

umap_metric ‘euclidean’ The distance metric to use for
UMAP.

random_state 0 The random seed

For our use case, there are two main tunables: umap_dim, and umap_neighbors. umap_dim is the number of
dimensions you wish to project the autoencoded embedding in. In general, values between 2 and the number of
clusters are acceptable. It is best to start at 2 (the default value) and then go up from there. All of the breakthrough
results in the paper were done with umap_dim =2. umap_neighbors is the number of nearest neighbors UMAP will
use when constructing its KNN graph. In the case of N2D, this should be a small value, as we want to learn the local
manifold. The default value for umap_neighbors is 10, as it will allow you to reproduce the results in the paper,
however umap_neighbors = 20 sometimes performs slightly better, especially if the autoencoder loss is high. Since
umapGMM takes just a few seconds to run, it is worth it to tune these two values in general.

Finally, we are ready to get clustering!

2.3.3 Initializing N2D

Next, we initialize the n2d object. We feed it first an autoencoder, and second a manifold clusterer:

harcluster = n2d.n2d(ae, manifoldGMM)

and that’s it! Now we can fit and predict!

2.3.4 Learning an Embedding

Next, we need to train the autoencoder to learn the embedding. This step is pretty easy. As this is our first run of
the autoencoder, the only thing we need to input is the name we would like the weights to be stored under, as well as
create a weights directory.

harcluster.fit(x, weight_id = "weights/har-1000-ae_weights.h5")

This will train the autoencoder, and store the weights in weights/[WEIGHT_ID]-[NUM_EPOCHS]-ae_weights.h5.
The arguments to the preTrainEncoder method are shown in the table below:

6 Chapter 2. Getting started

n2d Documentation, Release 0.3.1

Table 3: fit Arguments
Argument Default Description
batch_size 256 The batch size
epochs 1000 number of epochs
loss “mse” The loss function. Anything that

tf.keras accepts will do.
optimizer “adam” The optimizier
weights None The name of the weight file. If

None, the model will be trained
verbose 0 The verbosity of the training
weight_id None if None, the encoder weights will

not be saved. If string, it will save
the weights to that file path

patience None int or None. If None, nothing spe-
cial happens, if int, the tolerance for
early stopping

Please note the patience parameter! It can save lots of time. Also please note, if you do not tell N2D where to save the
model weights, it will not save them!!

On our next round of the autoencoder, while we fiddle with clustering algorithms, visualizations, or whatever, we can
use the preTrainEncoder method to load in our weights as follows.

harcluster.fit(x, weights = "weights/har-1000-ae_weights.h5")

Finally, we can actually cluster the data! To do this, we pass the clustering mechanism into the N2D predict method.

preds = harcluster.predict(x)

This will save the prediction internally and externally (for visualization convenience). The prediction is internally
stored in

harcluster.preds

for your convenience if you want to access the predictions for plotting/further analysis

2.3.5 fit_predict

We can wrap these two commands into one using the fit_predict method, which takes the same arguments as fit:

harcluster.fit_predict(x, weight_id = "weights/har-1000-ae_weights.h5")

2.3.6 predict_proba

If your clusterer has the method “predict_proba”, you can also do that:

probs = harcluster.predict_proba(x)

2.3. Building the model 7

n2d Documentation, Release 0.3.1

2.3.7 Assessing and Visualization

To assess the quality of the clusters, you can A) use some custom assessment method on the predictions or B) if you
have labels run

harcluster.assess(y)
(0.81212, 0.71669, 0.64013)

This prints out the cluster accuracy, NMI, and ARI metrics for our clusters. These values are top of the line for all
clustering models on HAR.

To visualize, we again have a built in method as well as tools for creating your own visualizations:

Built in:

harcluster.visualize(y, y_names, n_clusters = n_clusters)
plt.show()

Custom :

We need a few things for a visualization: The embedding and the the predictions. The embedding is stored in

harcluster.hle

You typically want to plot the embedding as x and the clusters as y! Lets also check out what our clusters look like!

8 Chapter 2. Getting started

n2d Documentation, Release 0.3.1

These are the predicted clusters, now lets look at the real groupings!

2.3. Building the model 9

n2d Documentation, Release 0.3.1

Looks like we did a pretty good job!! One very interesting thing to note, is even though it got some things wrong,
where it got them wrong is still useful. The stationary activities are all near each other, while the active activities are all
together. N2D, with no features and labels, not only found useful clusters, but ones that provide real world intuition!
This is a very powerful result.

2.4 Predicting on new data

Once the everything has been fitted, we can easily make fast predictions on new data:

x_test, y_test = some test set
new_preds = harcluster.predict(x_test)

This will use the autoencoder to map the data into the proper number of dimensions, and then transform it to the
manifold learned during fitting, and finally cluster it using the trained clustering mechanism.

10 Chapter 2. Getting started

n2d Documentation, Release 0.3.1

2.5 Saving and Loading

N2D models can be saved for deployment with the save_n2d and the load_n2d functions. Currently, this is managed
by saving the encoder to an h5 file, and pickling the manifold clusterer. This is an open option area for development,
ideally the whole model will be serialized in an h5 file. If you wish to contribute, please see the issue. To save an n2d
model, follow the following procedure:

n2d.save_n2d(harcluster, encoder_id='models/har.h5', manifold_id='models/hargmm.sav')

to load, we follow a similar mechanism:

hcluster = n2d.load_n2d('models/har.h5', 'models/hargmm.sav')

Please note that for rapid development and experimentation you should use the weight saving in the .fit method, as
that is its intended use. You can train the network and then fiddle around with the rest of the model. This means that
save_n2d and load_n2d should only be used for deploying the model.

2.5. Saving and Loading 11

https://github.com/josephsdavid/N2D/issues/5

n2d Documentation, Release 0.3.1

12 Chapter 2. Getting started

CHAPTER 3

Advanced Usage

As mentioned earlier, N2D is an entirely extensible framework for not too deep clustering. In this section we will
discuss modifying the clustering/manifold learning methods, and modifying the autoencoder. The independence of
each step of N2D means we can change the autoencoder into a convolutional autoencoder or some other more complex
LSTM based autoencoder, depending on the application, or change clustering method. We will discuss changing both
parts of the algorithm below.

3.1 Changing the Manifold Clustering Step:

To extend N2D to include your favorite autoencoder or clustering algorithm, you can use either of the two generator
classes. To replace the manifold clustering step, we use the manifold_cluster_generator class. This class takes in 4
arguments:

1. The class of the manifold learner, for example, umap.UMAP

2. A dict of arguments to initialize the manifold learner with

3. The class of the clusterer

4. A dict of arguments for the clusterer

Objects created by generators can be passed directly into N2D, without needing any boilerplate code. Lets go ahead
and look at an example. Let us assume that we want to use density based clustering with UMAP and our standard
autoencoder based dimensionality reduction. First, we import our libraries:

import n2d
import numpy as np
import n2d.datasets as data
import hdbscan
import umap

x, y = data.load_mnist()

First, we make our autoencoder, for now using the AutoEncoder class:

13

n2d Documentation, Release 0.3.1

ae = n2d.AutoEncoder(input_dim = x.shape[-1], latent_dim = 20) # chosen arbitrarily

Next, lets define the arguments we wish to initialize hdbscan and umap with. Please note these values are chosen either
arbitrarily or for visualization:

hdbscan arguments
hdbscan_args = {"min_samples":10,"min_cluster_size":500, 'prediction_data':True}

umap arguments
umap_args = {"metric":"euclidean", "n_components":2, "n_neighbors":30,"min_dist":0}

Next, lets go ahead and generate something we can use to cluster our embedding!!:

db_clust = n2d.manifold_cluster_generator(umap.UMAP, umap_args, hdbscan.HDBSCAN,
→˓hdbscan_args)

Now we pass those into n2d.n2d and we are good to go!:

n2d_db = n2d.n2d(ae, db_clust)

We can fit as usual:

n2d_db.fit(x, epochs = 10) # for times sake, this is just an example

Because this is dbscan, after fitting we can say we are done! The fitted n2d object can do anything the parent clustering
class can do (it also shares its limitations). This means that we can just go ahead and grab the predictions which
hdbscan already so kindly made for us:

the probabilities
print(n2d_db.clusterer.probabilities_)
the labels
print(n2d_db.clusterer.labels_)

The clustering algorithm is stored in .clusterer, while the manifold learner is stored in .manifolder::
print(n2d_db.clusterer) print(n2d_db.manifolder)

Note that while our fitted n2d object has all the attributes of the clustering mechanism, it also has all of the limitations.
That means, in the case of hdbscan, we can do fit_predict, however there is no predict method.:

works
n2d_db.fit_predict(x, epochs = 10)
fails
n2d_db.predict(x)

However, hdbscan has a neat trick where we can make “approximate predictions”. This is allowed! We can write a
imple function to get the approximate predictions and make predictions on new data:

x_test, y_test = data.load_mnist_test()

predict on new data with dbscan and not too deep clustering!
def approx_predict(n2d_obj, newdata):

embedding = n2d_obj.encoder.predict(newdata)
manifold = n2d_obj.manifolder.transorm(embedding)
labs, probs = hdbscan.approximate_predict(n2d_obj.clusterer, manifold)
return labs, probs

labs, probs = approx_predict(n2d_db, x_test)

14 Chapter 3. Advanced Usage

n2d Documentation, Release 0.3.1

Next, lets look at swapping out the autoencoder!!

3.2 Changing the Autoencoder

To swap out the autoencoder, we can, just as with the clustering step, use a generator class. In this case, we will use
the autoencoder_generator class. This class takes in 2 things: an iterable of model parts, and if needed a lambda
function. The lambda function is not necessary, and by default does nothing. However, for some use cases it may be
useful to change the inputs to the encoder. We will look at one such case: a denoising autoencoder. NOTE: this is a
simple example to showcase features, there is no real precedent for clustering with a denoising autoencoder

First, again, we load up our libraries:

import n2d
from n2d import datasets as data
from tensorflow.keras.layers import Dense, Input
import seaborn as sns
import umap
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
plt.style.use(['seaborn-white', 'seaborn-paper'])
sns.set_context("paper", font_scale=1.3)

x, y, y_names = data.load_fashion()

n_clusters = 10

Next, as usual, we are going to make our autoencoder, however this time without the AutoEncoder class. We are going
to want to make a list, tuple, or array that contains pointers to the input layer, the end of the encoder (center layer),
and output layer of the encoder. To do that we will use the tf.keras functional API:

hidden_dims = [500, 500, 2000]
input_dim = x.shape[-1]
inputs = Input(input_dim)
encoded = inputs
for d in hidden_dims:

encoded = Dense(d, activation = "relu")(encoded)
encoded = Dense(n_clusters)(encoded)
decoded = encoded
for d in hidden_dims[::-1]:

decoded = Dense(d, activation = "relu")(decoded)
outputs = Dense(input_dim)(decoded)

Lets go ahead and define our first set of inputs for the autoencoder_generator class:

ae_stages = (inputs, encoded, outputs)

Again, the autoencoder_generator class requires an iterable containing the input layer, the encoding, and the decoded
output layer of the model. The rest is taken care of internally. As this is a denoising autoencoder, lets also write a
function that adds noise to our data:

def add_noise(x, noise_factor):
x_clean = x
x_noisy = x_clean + noise_factor * np.random.normal(loc = 0.0, scale = 1.0, size

→˓= x_clean.shape)

(continues on next page)

3.2. Changing the Autoencoder 15

n2d Documentation, Release 0.3.1

(continued from previous page)

x_noisy = np.clip(x_noisy, 0., 1.)
return x_noisy

Now we can go ahead and generate an autoencoder for N2D:

denoising_ae = n2d.autoencoder_generator(ae_stages, x_lambda = lambda x: add_noise(x,
→˓0.5))

Finally, lets initialize UmapGMM and our model, and make a quick prediction:

umapgmm = n2d.UmapGMM(n_clusters)
model = n2d.n2d(denousing_ae, umapgmm)
model.fit(x, epochs=10)
model.predict(x)
model.visualize(y, y_names, n_clusters = n_clusters)
plt.show()
print(model.assess(y))

And with that, you are ready to get clustering and testing new and unexplored algorithms! If you are having any
troubles, or ideas for features, please make an issue on github!!

16 Chapter 3. Advanced Usage

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	About N2D
	What is N2D?
	Purpose of the library
	Citation

	Getting started
	Installation
	Loading Data
	Building the model
	Predicting on new data
	Saving and Loading

	Advanced Usage
	Changing the Manifold Clustering Step:
	Changing the Autoencoder

	Indices and tables

